In response to the NY Times article related to the Tibbetts Brook daylighting to boost capacity for sewers and some discussion on Twitter, Adam Broadhead (@losturbanrivers) sent a great 2013 journal article in Water Research, “Captured streams and springs in combined sewers: A review of the evidence, consequences and opportunities” by Broadhead, Horn, Lerner, which addresses the issue with some research. The article is paywalled, but let me know if you’d like a copy and I can email it to you.

It’s more of a deep dive into some of the research, but the general thrust is that water intrusion in systems has reduced capacity, and that the intentional encasement of streams and springs in pipes reduces the capacity of infrastructure which has a significant economic, environmental and social implications for the infrastructure, as it reduced the baseflow reduces the overall effectiveness of gray infrastructure.

The typical mechanism for intrusion into pipes is related to cracks, which is assumed to be residual groundwater entering pipes in ‘dry weather’ times, where there should be no flow into the system. Groundwater intrusion should not be discounted, but there are other sources of intrusion that are typically not considered, specifically “capture of streams and springs” that impact combined systems capacity.

The figure below shows the change in baseflow and runoff response due to the intrusion of the additional water from streams and springs.

The paper continues to identify the issue, also highlighting the lack of research on this topic, and answers some fundamental questions about how this capture occurs, how to identify it, what is the magnitude and impacts, and ways to manage it. Always interested in language, one item of interest explores key terminology – culverting, extraneous water, groundwater infiltration, sewer inflows and the key element, stream and spring capture. The wordplay is compelling, with some uniquely evocative terms emerging such as parasite flow, misconnected surface waters, sewer leakage and illicit connections all telling a story of water that is in a sense, ‘out of place’.

The how and why is interesting. The most basic version is to take a free flowing stream and incorporate it into a pipe (Type A in graphic above). “Urban streams were frequently culverted and buried, especially during the period of rapid urban expansion in the 19th century.” It’s not a stretch to show that the literature confirms that “old sewers were frequently the covered channels of brooks”, as early development merely hid the streams, but didn’t generate as much additonal flow to overwhelm the piped streams. This happened with additional development and expansion of cities and impervious zones. Often the buried streams become the names for the sewers themselves, such as those specifically mentioned in the article like Garrison Creek Sewer in Toronto and Minetta Brook Sewer in New York.

The baseflow in the streams, unlike sewage, is clean, so the incorporation into pipes and transportation to wastewater treatment plants means additional strain on purification infrastructure with water that doesn’t need treatment. This relates to the original conceptual idea of the Tibbetts Brook example today, with a clear path to remove ‘clean’ water that is reducing combined capacity and overall resilience to deal with larger storms.

Additional capture happens by interception (Type B in graphic above). The most visible example is the massive interceptor sewers in London developed by Bazalgette in response to the ‘Big Stink’ in the the 1850s, acting as a divertor to sewage entering the Thames. This model was copied around the globe, with numerous examples of streams disconnected from their outfalls and no longer making it to their original destinations in the name of water quality. Portland has a large, expensive example of this called the Big Pipe. Many other cities have similar interceptor systems.

Another mode of is by directly capturing and draining spring and seeps in combined sewers, in this case through leaky pipes with cracks and joint openings. Beyond being shoddy construction, this was intentional, designed as deliberately leaky to provide drainage in areas of perched or high groundwater. The 3 types are summarized graphically above, showing variations of combined sewers and stream capture typologies.

The connection here to lost rivers is outlined in the article: “Not all streams and springs are fully captured by these modes of entry. London’s lost rivers diverted into the High, Mid and Low Level Interceptors to the WwTW, (wastewater treatment works) such as the Walbrook, Fleet, Tyburn and Westbourne, do still discharge to the River Thames during heavy storm events, where the original courses of the rivers serve as CSOs.” This is also a pattern in the United States (New York) and Asia (Tokyo) where many of the piped streams never make it to their original drainage water bodies.

The 19th Century was a historic time for burial of waterways, as the rate of urbanization outpaced the ability of natural streams to remove wastes. Thus: “Urban streams that had become open sewers were frequently culverted and buried to provide more sanitary conditions, and this concept is a popular narrative predominantly explaining the conversion of many smaller watercourses to combined sewers (type A).” Beyond the main drivers of pollution reduction and removal of the streams to create land for development, the introduction of seeps and springs provided some necessary baseflow to ‘flush’ sewers as a method of ‘self-cleansing’, and thus was in common practice in sewer design.

It is obviously difficult to identify these captured streams, as they exist under the surface and the original hydrology has been erased. This is where hidden hydrology methodology, using mapping and other primary sources to show where routes of surface flows used to run. Often these were parts of combined sewers, but in some cases the streams were just dumped into pipes. While still important, it is less impactful to combined systems and wastewater treatment facilities as they are often just draining into the same waterbodies that the original creek flowed in to.

Urban exploration is another method of finding routes of streams mentioned (which I’ve covered in depth here in many cities). Mapping of sewers and streams supplement this work, with many cities having robust sets of maps dating centuries in the past to fill in gaps of knowledge of what was there and what was replaced. More sophistical modeling can be helpful, but simple cues like place and street names and other subtle clues can also be extra data to be used to pinpoint old routes of waterways. As mentioned:

“Relevant information on lost urban watercourses helps to establish the pre-development hydrology, but the usefulness of historic maps depends strongly on spatial and temporal coverage, with many older towns and cities having altered the hydrological landscape before the first available maps. The smallest streams and springs may also not be marked on maps at certain scales, particularly intermittent and ephemeral channels.”

The ability to quantify these captured streams is equally challenging – there is adequate knowledge of the phenomenon but lacking in specific data on volumes, routes and baseflow contributions to the systems. While even knowing the levels would be helpful, measuring current flows will yield radically different results today versus pre-development conditions. When quantities can be estimated, the economic benefits can be modeled to see impacts, but this is not common. How the water is distributed is also variable and depends on unique qualities of each stream.

The major consequences are two-fold. First, the introduction of clean stream water increases the amount of water handled by treatment plants, which has larger infrastructure costs in terms of facility construction and operations. Second, loss of surface streams has impacts to habitat, less ecological connectivity, and overall less ecosystem services, including amenity value. It can even have secondary impacts on urban heat by reduction of linear corridors of riparian vegetation. While the anecdotal benefits of ‘flushing’ using the streams was developed early-on, it’s not understood if there’s actual value of these approaches.

A summary of the impacts on the industry are included:

  • More land and costs needed for wastewater treatment infrastructure
  • Additional operational costs and use of chemicals
  • External impacts, such as public health impacts of CSOs, impacts due to loss of ecosystem services due to diversion of local streams, and economic losses.

There’s a more detailed cast study from Zurich, Switzerland that’s worth exploring more. In summary, the authors mention the city as a pioneer through “innovative management of capture streams and springs in combined sewers,” typically through separation using daylighting. This was driven by understanding the “lost social ad environmental values of watercourses that had become culverted and had historically been used as wastewater sewers.”

The benefits to the public include amenity spaces, and also more efficient infrastructure through additional capacity. This dual benefit is key to the Stream Concept, and became codified into planning policy and laws. The dramatic reducing in streams due to urbanization is similar to other cities, with development displacing larger areas of open space and burial of streams, many of which were converted into combined sewers between 1850 and 1980 as seen in the figure below.

The transformation of streams from this point in 1980 shows the changes in approach used by Zurich in the Stream Concept. This is outline in the existing condition (1) which includes stream capture in a traditional combined sewer system, a severing of the hydrological system and piping; the first transformation (2) consisting of separation of the combined systems to removed capture streams, and eventually the final phase of the Stream Concept (3) “separating captured streams and springs into daylighted urban watercourses.”

An important aspect which reflects my approach allows for hybrids of ‘daylighting’ without and zero-sum outcome of daylight or nothing, but allow for a continuum of potential options – as I’ve discussed, between art and science (abstraction vs. pure restoration) or more specifically, interventions that can be located in a triad of artistic, design, or engineering. The street streams, per the articles:

“Naturalistic stream channels and riparian corridors are used where possible, but where space is limited, engineered “street streams” are installed. The latter may have a lower ecological potential, but nevertheless offer architectural value in urban areas.”

The two different typologies seen above show a ‘naturalistic’ approach in a more suburban location (Albrisrieder Dorfbach), versus the more urban ‘street stream’ in Zurich (Nebelbach). The street streams may mimic green infrastructure solutions like green streets as linear corridors, with the conceptual difference of being able to be hydrologically connected from source to outfall to re-connect the old stream corridor, versus merely being site specific insertions.

The article concludes that there is value in disconnecting streams and springs from combined systems (or if we could spin time back, not connecting them in the first place), with economic, environmental and social benefits. The diversion of clean, constantly flowing water out of combined systems provides capacity, and by daylighting (vs. piping) these streams, we have the additional ecosystem benefits. The need for more research is mentioned: “By using daylighted urban streams to convey the clean water baseflow, highly promising social and environmental benefits
have been suggested; an independent peer-reviewed appraisal of this approach would be strongly recommended.” Since this is a 2013 article, I’m curious what additional scholarship has emerged in the last decade.

I also am intrigued by two of the US examples identified in the article were in Portland and Seattle, both of which mention combined sewers with springs running in them. Worthy of more exploration, but both of these do related to a location where a stream was buried and integrated into the pipe infrastructure of the city, which was common in many streams in both cities (for instance Ravenna Creek in Seattle, or Tanner Creek in Portland). Perhaps with the continual increasing impacts of climate change on these systems would drive another look at some daylighting to increase the resilience of the pipes to handle more capacity, while also providing habitat, amenity, recreation, and a range of other essential urban ecosystem services?


Full Citation: A.T. Broadhead, R. Horn, D.N. Lerner, Captured streams and springs in combined sewers: A review of the evidence, consequences and opportunities, Water Research, Volume 47, Issue 13, 2013, Pages 4752-4766, ISSN 0043-1354, https://doi.org/10.1016/j.watres.2013.05.020

Header Image: Figure from the article: Historic loss of Zurich’s streams (water in blue) with increasing urbanisation (grey).

A September 2021 NY Times opinion piece “Let Water Go Where It Wants to Go” by one of my inspirations, Eric Sanderson points out the connections between historical ecology and the future city with a simple statement:

“Water will go where water has always gone”

– Eric Sanderson

I feel like I’ve been overcomplicating my explanations of the connections of climate change and hidden hydrology and Sanderson just nailed the concept in a few words. While the explanation is simple, the complex interactions between that hidden (buried) strata beneath the surface that have been erased from our urban areas and how these areas are poised to re-emerge in the urban sphere in dangerous ways as zones of flooding during extreme weather events is a topic worthy of more examination.

We have plenty of extreme events and flooding here in the Pacific Northwest to see this phenomenon play out in similar ways, causing water levels to rise in creeks or streams, or with high-precipitation rainfall that accumulates faster than it can drain in cities. Hurricanes, however, seem to be a special case in exacerbating issues just by the sheer scale and concentration of impacts in a short duration. These continual, cyclical events along the Eastern Seaboard ad Gulf Coast highlight the danger or urban flooding and as Sanderson points out, offers clear connections with the current flood events in locations of historical, now buried, waterways.

Hurricane Sandy opened many eyes to the risks. At the time there were a number of articles that caught my eye, particularly the idea that inundation and flooding at the margins were related to the idea of land filling and shoreline creation and the margins, replacing natural shorelines with hardened urban edges and bringing development out into these areas. In this June 2013 article in the Daily Mail, “How Hurricane Sandy flooded New York back to its 17th century shape as it inundated 400 years of reclaimed land.” the .

Expanded Shoreline of Manhattan from 1650-1980 – via Daily Mail

Looking at the extent of flooding in Hurricane Sandy (map below) and a number of studies on flood risk, it’s possible to do a quick mental overlay ad show the vulnerability related to the ‘made land’.

Map of flooding during Hurricane Sandy – (Village Preservation)

This is obviously not unique to New York City, and I’m interested in researching other places where flooding and made land has a similar correlation. In these cases, the conceptual connection started to take shape in the impacts of flooding at the edges, and how filled land can become a marker for shoreline flooding, which will inevitably be impacted more by sea-level rise in cities that have claimed1 this land from their adjacent water bodies.

The most recent events, during Hurricane Ida, Sanderson points out, go even more fine grain to individual inland areas where historic creeks or wetlands intersect with, such as Central Park (where wetlands were removed in construction of the park) and various other areas, including fatal incidents of basement flooding, in areas of where creeks, streams, wetlands and tideflats existed even up the the early 1900s.

A specific example of flash flooding in the subway in Manhattan at 28th Street and 7th Avenue (see video on Twitter post which is bonkers for both the intensity of the flooding and the utter lack of reaction from New Yorkers watching on the platform). As the article mentions the location of the flooding: “Right in the middle of a wetland clearly shown on 18th-century maps, the headwaters for The Old Wreck, a stream that fed Sunfish Pond, on the south side of Murray Hill, before reaching the sea at Kip’s Bay.”

18th Century Map showing location of wetland in area of 28th Street Station – via NY Times

The takeaway of cause and effect is summed up by Sanderson:

“The city even has a map where the extreme flooding happens, compiled from 311 reports and official observations. It is, for all intents and purposes, a map of the old streams.”

The action here is simple – avoid damage and loss of life from these events, because they are not going to stop any time soon. Increase resilience (both social and eco/hydrological) helps, and as the OpEd mentions, there are many other socio-economic factors involved that increase risk. But Sanderson looks for solutions (the old ways of knowledge) and points out “The losses are mainly the result of our inability to read the landscape where we live and conceive fully what it means to live there. We need to see the landscape in new, by which I mean old, terms.”

Where we location development must respect the hydrological history, as we’ve seen time and time again our inability to overpower nature, and ultimately the failure of forgetting what we buried. Worth a read for the article is a great explication of a terribly absent land consciousness and ethic, but at a practical level, there are some hints that allow us to connect historical ecology to solutions such as making room for water and using Nature based solutions such as wetland restoration and tree planting, many of which are continuing to take a rightful place in climate and resilience plans.

Perhaps the ending, again, for all of our complex machinations, allows us to think more simply about the solution and find opportunities for this simple action:

“Let’s let the streams run free.”

Endnotes

  1. Maybe my own rant, but there’s a whole series of posts and discuss related to the concept of ‘reclaiming’ land from the sea, which is the common parlance in this case. I do prefer ‘claiming’ and the idea of ‘made land’, as it’s really impossible to reclaim something you never possessed in the first place.

Header image – NY Times – photo by Anthony Behar/Sipa – Associated Press

After bit of a break I’m hoping to write more frequently on all things Hidden Hydrology. For some context, in this time away I have been researching more deeply Portland’s Hidden Hydrology, delving into archives for stories of my local disappeared streams, buried creeks, and filled wetlands around the metropolitan area. I’ve also compiled a composite map of Portland spanning the 1850s through the 1900s to piece together the most complete version of the hidden hydrological layers that existed pre-settlement. I’ve kept up doing research more informally in the broader and mostly sharing on Twitter and Instagram, which are both simpler media for messaging, but also seem lacking in depth that more expansive writing can capture. While it may be true that blogging is no longer a viable medium, I feel a need to write more deeply, and more often, and more personally about my home, my history, and my places. This will hopefully lead to writing more broadly as well in journals, and culminate in my ultimate goal — to write a book (or more than one) on hidden hydrology.

A few recent thoughts, ideas that I take with me into the next journey.

WATER STORIES, HUMAN STORIES

The origins of my interest are documented on the site here, including a strange and wonderful Portland map by Metro, the inspiring academic work of one of my landscape architecture idols, fiction and place-based non-fiction from a local legend, and Mannahatta’s deep eco-hydrological historic mapping. These inspirations and the subsequent research into the overall concept of hidden hydrology documented here on this site has left numerous imprints on how I think about hidden hydrology as a concept and a methodology for integrating into planning and design. Upon reflection, I have typically always approached the project through the lenses of hydrology, history, ecology and place, with the human element occupying a supporting side-narrative to these other elements.

Every story has a uniquely human interface and the phenomena of hidden hydrology is no different, with a variety of actors involved in the discovery, use, manipulation, destruction, protection, and restoration that are all story arcs of urban streams, wetlands and other water bodies. I have always seen the people involved in more broad strokes, as populations and groups acting against nature and natural processes, or conversely communities and coalitions being often negatively acted upon and attempting to preserve and protect systems. Rarely did I connect people to places in a meaningful way beyond faceless groups, only rarely placing individuals and their stories and essential ingredients to unlocking the true history of place.

Sketch of Indians Fishing by Willamette Falls – 1841 by Joseph Drayton (Oregon History Project)

As origin stories, the native Chinookan people have occupied and shaped the waters of Portland for centuries. There are specific narratives of leaders, like Concomly as part of the larger Chinook territory in the late 1700s and early 1800s and Kiesno (aka Cassino) who was located near Portland on Wapato Island, who was also an important figure through the early to mid 1800s , The native stories and start to take shape via early explorers, whereby they drift into settler narratives told about those indigenous people and never told by them. Thus we remember ‘discovery’ and the snapshots of what written narratives and maps were documented, but know less about the life and the interaction with many of the places in the region beyond a few major areas of significance that were spiritual centers and places of food gathering and trade. I challenged myself to weave these stories into the narratives, and although I feel more informed, I’ve barely scratched the surface, so the next steps are to engage and learn from descendants and hear stories of places that were of significance to Chinook people in the past, and those that are still resonant today.

In Seattle, I walked and wrote about Licton Springs, which explored the deep indigenous connections to place in a remnant urban stream – weaving together the long and contentious history, which was recently given protection as a landmark of cultural significance to Coast Salish people. Many of these stories need to be told, and the opportunity to connect our diverse history to water places – the water stories and human stories, continues to intrigue me.

Licton Springs (Photo by Author)

Broadening the cultural lens, I’ve written about Tanner Creek and the Chinese farmers who cultivated lands adjacent to the creek using the amazing resource by Marie Rose-Wong on early Chinese residents of Portland, documenting the erasure of the creek and the Chinese farms in tandem, both slowly disappearing from Portland in the wake of ‘progress’ that wanted neither the Chinese people, nor the messiness of flooding, steep gulches that stood in the way of a modern metropolis.

View of Chinese Farms in Tanner Creek Gulch – circa 1892 (Portland Archives)

The narratives feature places like Guild’s Lake, a contested area with a variety of actors working to destroy, displace and erase historic waterways to pave the way for development and industrialization, with little thought to the impacts ecologically and socially to these actions. As you map out the timeline of erasure for many waterways, it’s never one person or one big move, but a variety of consistent, incremental actions, driven by the need for progress and growth, that privileged the needs of few over the impacts to many. The missing piece of this is again the human dimension, the root of all of these stories were the people who occupied these places, and how they, and their actions, gave life to the unique water places in the community. And as other forces removed the waterways, how they were impacted by the places are lost. The places are not coming back, but but hopefully through the stories some idea of that experience can re-emerge and remain.

Chinese man fishing in Guild’s Lake – circa 1890 (Oregon Historical Society – OHS-bb016278)

Another significant narrative in Portland’s water history is the intersection with the African American story, told through the emergence and eventual destruction of Vanport City. There are many narratives as to the cause of the flooding and destruction of in the1940s worth exploring, and the eventual displacement and segregation that happened after the city was destroyed continues to shape the city today.

Aerial View of Vanport Flooding, 1948 (Portland Archives)

As my post documenting the amazing OPB documentary “Vanport” shows, these, too are human stories, with interviews and first person accounts of the development and occupation of this novel community, and the lead up to the destruction and displacement of larger populations of people that had lasting impacts and left an indelible mark on the racial history and social structure of Portland.

CLIMATE CONNECTIONS

While Vanport was not a result of climate change per se, this larger narrative of catastrophic flood events also provides a hint at more extreme future scenarios that intersect with my research on hidden hydrology: the connections between the lost and buried streams, wetlands, ponds and water bodies, along with made-land through filling and manipulating shorelines, and how these ultimately give clues to and exacerbate our present impacts related to climate change.

Stories in the mainstream media are reinforcing these connections, and through recent research, and continues to gain prominence and momentum as a dimensions of climate change evolve and the impacts are played out in communities more frequently and in more extreme forms.

1894 Flood in the North Park Blocks of Portland – (Portland City Auditor)

There are a number of drivers for the ‘creative destruction’ of water systems in cities. Making land for development by piping creeks, filling gulches, ponds, wetlands and shorelines to make developable land offers the chance to grow and continue to build. Much of this was also an element of the modern safety movement that was concerned with life and property damage from flooding creeks, and the related sanitary movement was driven by public health concerns, often by removing access to polluted waterways. In short term and in earlier times, these efforts may have seemed good approaches but come with some unfortunate baggage in loss of ecosystem function, and lack of resilience.

Flooding is obviously not a new thing, and is not always the result of removal of waterways not of climate change. However it is not difficult to make general connections that flooding often follows the historical shape of water in cities, and that removal, filling, and piping of creeks, streams, wetlands and ponds has lasting impacts to the hydrology and that the impacts will be more evident as climate change raises sea levels, increases extreme precipitation and storms, and increases urban heat.

A recent NY Times editorial by Eric Sanderson makes this case, unpacking impacts of recent extreme weather and hurricanes and tracing that to lost streams that wove through New York City. The simple statement of “Water will go where water has always gone.” sums up the phenomenon, while giving us an interesting new (old?) methodology for predicting impacts by using historical hydrological systems in new ways. Beyond that in the past year, my Twitter feed is filled with stories of flooding in Europe, UK, and around the US, a global climate change induced impact all traced back to the link between historical waterways and current, human-caused climate change. Lots more on this topic to come.

EVOLUTION

As I researched more from the archives of local newspapers and uncovered more unique, human stories, the narratives became less about places and the lost waterways, but how these created a tableau of life. Rarely were stories these idyllic and utopian, but painted a picture of daily life and the struggle to build a city carved out of the forest at the confluence of two rivers. Often they were narratives of greed, racism, and exploitation, focusing on power and money which were allowed to run rampant in a time of very little environmental policy and awareness of impacts.

The water stories become stories of native people who developed thriving communities that were in a short span of time decimated by disease, violence and displacement from their lands and waters. The stories of Chinese farmers who lived on the margins of gulches and ponds in Portland, who contributed to the building of the community and were rewarded with racism and erasure from their places of productivity and community. The devastation of a flooded African American community of Vanport left ship workers and their families, engaged in supporting the war effort while building a life in Portland left many without a place live and led to a continuing and marginalization that continues today.

These historical water stories connect people to place and add a human dimension to an ecological history. When woven together with more contemporary climate stories, it also provide a solid foundation for why this work matters in design and planning for the future. It is far from a nostalgic looking back of what’s lost, but rather an opportunity to think about lessons learned related to how we can live and thrive together while growing a diverse community. It is also a blueprint for action on climate resilience, a future-focused approach to planning for urban heat, flooding, and other key resilience measures to make our communities more livable. Call the preliminary phases of this project a good information gathering, understanding what hidden hydrology is. The evolution becomes how to use this information to shape our communities in positive ways. Look forward to exploring and continuing to evolve.

It was great to attend a talk by historian James V. Hillegas-Elting at Powells earlier in the week, where he gave the highlights of his recently released book “Speaking for the River: Confronting Pollution on the Willamette, 1920s-1970s“. You can read more about his work here at his blog, and I will definitely have some follow up as I dive into the book as it paints a history closely in alignment with hidden hydrology in Portland. The arc of degradation and restoration of the key waterway through Portland and the Willamette Valley is woven together with urbanization, industrialization, and our relationship to the river, as well as the evolution of an environmental ethos that shapes the way we continue to confront existing pollution today (and yes, there’s still lots of it).

In the interim, one highlight worth sharing is this silent film from the 1940s, which is available via streaming from OSU Special Collections and Archives Research Center. A brief synopsis to go with the film:

” The Willamette River Pollution Film depicts various point sources of pollution in the Willamette River and its tributaries. The film begins near Springfield and progresses downstream to Portland and includes footage of various forms of industrial, agricultural, and municipal effluent being dumped into the Willamette River and its tributaries, including the Pudding and South Santiam Rivers. The footage includes tests of the length of time that small fish can survive in water from the Willamette River and chemical tests of the river water. The film includes footage of the river or its tributaries at Springfield, Eugene, Corvallis, Crabtree, Lebanon, Salem, Woodburn, and Portland.”

The production quality is rough at times but you get the gist, with visible pollution from multiple sources, floating dead fish, rats, and all the visual evidence to make the case of an unhealthy river, devoid of dissolved O2 and lifeless. From the OSU Special Collections listing, “The film was probably made by William Joy Smith, of Portland Oregon. Smith was State Manager of the National Life Insurance Company and President of the Oregon Wildlife Federation. It was made before establishment of the state Sanitary Authority and fostered much of the original interest in water quality in Oregon. The film may also have been known at the time of its creation by the title “The Polluted Willamette”. “

—-

HEADER: Still image from video showing men fishing adjacent to an active outfall. (32:11)

A favorite precedent of mapping around water was the DC Water Atlas by John Davis, which explored historical waterways and some of the hidden layers of the hydrology of Washington D.C. in an interactive way.  A recent mapping effort, The D.C. Underground Atlas by Elliot Carter takes a slightly different stance and approach, both in content and delivery, augmenting this previous effort and expanding the breadth and the way it is communicated via a series of interactive Story Maps.  The thrill of peeling away perceptual layers of history and infrastructure interests many, which is reinforced from Carter’s introductory text:

“Washington sits atop an interconnected layer cake of transportation, utility, and pedestrian tunnels extending three dimensionally beneath city streets.  Given their importance to daily life in the nation’s capital, it’s surprising to find that the full picture of Washington’s various tunnels remains unpainted. This project aims to complete that picture.”

While the previous effort by Davis was focused specifically on water, the new effort focuses on ‘tunnels’, in the sense that they are accessible.  As mentioned by Carter “In order to limit the scope of the project, “tunnels” are defined as fully walkable passageways – no sewer pipes, culverts, or crawlspaces. All the tunnels depicted can accommodate standing adults, assuming that they have proper access credentials.”  What are included are maps of multiple transportation modes, water, steam and sewer infrastructure, as well as pedestrian tunnels and the specialize subterranean elements supporting the Capitol Mall.

With a short intro page, the interface gives you the option of Maps or Text, each taking your through a narrative with images, text, and maps that shift and zoom and layer additional information to tell a story of each of the particular types of tunnels.  For instance, the Sewer story starts with historical mapping with some information on the early sewage system, and then moves along a timeline, showing early infrastructure and how it evolves into more contemporary systems.

The sequence expands to show, with historical imagery, such as this showing the building of the combined sewer system in 1882 along with the major lines that were built at that time, and more recently a larger scale modern tunneling for new treatment facilities.

Obviously the focus on tunnels gives it a specific scale, and it’s not necessarily capturing the total water story, but showing the amount of subsurface infrastructure that exists, under our feet. The Aqueduct mapping leads more through the path of movement of water from source, with stops at major point, showing how you can adapt the Story Map to fit the particular type of infrastructure, in this case following a path.

For selected categories, the essays are more expansive, such as the breakdown of Aqueduct Tunnels, which expands the spatial narrative with some more rich history.  One of those points is the use, like many other cities, of wooden water pipes, in this case one from around 1810.

A wooden water pipe from Pennsylvania Avenue, installed circa 1810. Photo: Army Corps of Engineers/Public Domain

Another is the great historical images of the brick aqueducts, such as these 9 foot diameter pipes leading to the Dalecarlia Reservoir.

Photograph in Peale album, Washington Aqueduct. PG.66.25.41.

And more diagrams showing cool images of some of the documents, in this case coded to show the type and material of tunnels and their depths as the Tunnel traversed the landscape.  (click to enlarge)

Cross-section of the Lydecker Tunnel topography. The tunnel was advanced via vertical drop shafts at Foundry Branch, Rock Creek Park, Champlain Avenue, and McMillan Reservoir. Illustration: Washington Aqueduct/Public Domain

The story has multiple parts, remnants of abandoned infrastructure as well has a unique quality, such as the Sand Filters near the McMillan reservoir, in which “The underground vaults created their own weather systems when the sand filters were still in use, with internal clouds and condensation”

Photo: NPS/Public Domain

Lots more to explore here for sure, and if your thing is other, non water- types of infrastructure, this has lots and lots of layers.  While the DC Water Atlas, as I pointed out had an exploratory, video-game like quality, this D.C. Underground Atlas has more of a linear spatial narrative that is more direct.  Both have merits in making something that may be less compelling in an essay more engaging an accessible in map format.  As a form of storytelling it’s great, and perhaps the best story comes in the form of daring subsurface navigation, mentioned in the article in CityLab,

“…Carter says the “single most epic Washington tunnel story” might be the adventures of Don Bloch, a Washington Star reporter who wrote for the paper for about a year. In 1934, Bloch convinced the inspector of maintenance at the pumping station to let him cross the city through its sewers for a Sunday feature. Equipped with a flashlight, rubber boots, and a gasmask, he hopped down manholes from street to street, with “cloud watchers” who would warn him if a storm might pose a risk from rising waters. Bloch’s tour guide shoved him in a trunk lid for a ride on the waters leading into Rock Creek. Carter says it might be the “best thing in stunt tunnel journalism Washington has ever produced,” but Bloch’s story remains sort of an enigma to Carter. One of the few details he has been able to verify about him: He co-founded the Speleological Society of the District of Columbia in 1939. No mystery there, it’s not much of a leap from tunnels to caves.”


HEADER: Historical Sanitary System – via D.C. Underground Atlas (www.washingtontunnels.com); this and all images in this post via the site

Our understanding on the arc of history around hidden hydrology is informed with maps and accounts from early explorers and settlers to areas, augmented with records, diaries, and oral histories. Often this neglects and misses the valuable stories of indigenous inhabitants of areas, and leaves us with a significantly shorter timelines for reference. The role of archaeology is vital to unlocking the layers of hidden hydrology that don’t emerge from these illustrative written histories, so I was really intrigued with a recent tweet from the Museum of London Archaology (MOLA) (Twitter: @MOLArchaology) that told of their current work, called London’s lost river: the Tyburn.  From their site, the project is the result of “…a team of expert geoarchaeologists  whose work is helping us to understand London’s lost rivers. As an educational charity, we want to share what we’ve learnt, so please join us to explore the story of this long-lost river.”   

Using the interactive ESRI Story Map, MOLA developed a narrative to describe the process and some of the key findings.  Much of the work is conducted along with construction sites, which gives an opportunity to look below the surface while excavation is happening.  The River Tyburn flowed on the north bank of the Thames, and most famously, was routed and defined the space called Thorney that Westminster Abbey was located, seen in this view circa 1530.

The origins of the river are tied to the longer history of the Thames, which is illustrated (see header image) and reaches back to the last glacial period of 11,500 years ago.  From there in, “…this new epoch, known as the Holocene, the Thames began to take the shape we know today, but many channels still criss-crossed the river’s floodplain within the wide gravelly valley. One of  these channels was the Tyburn, which flowed into the Thames.”   In this zone, there are hundreds of sites, or ‘deposit logs’ that are recorded, and these are modelled to create a snapshot, particularly focusing on the depths of land (depicted below as green – high ground and purple – low ground.  From this model, “projected possible courses for the River Tyburn, following the lowest-lying areas of the modelled 11,500-year-old topography.” with a caveat that “the river would have migrated over time.”

Drilling down (literally) into the specificity of the deposits shows the ranges of material and how it can inform, looking at “ancient flora and fauna” and focusing on things like Diatoms, Pollen, and fossils of things like “Ostracods, the remains of small crustaceans, can indicate salinity, water depth, temperature, water acidity/alkalinity”.

Below is “…a cross section, or transect, running north–south from Westminster to Vauxhall Bridge, along the north bank of the Thames. This connects deposit sequences recorded in trenches and boreholes, and helps us look at these sequences over wide areas.”

They also connect their study with the work of Barton and Myers 2016 book ‘The Lost Rivers of London‘ (see here for a post on the same), which speculated on a number of scenarios for the Tyburn, and various routes.  There’s some graphic things I’d change here (namely it’s hard to read the Barton and Myers layers) but the concept is interesting, to overlay varying studies and ‘proof’ the concepts of routing. In essence, does the data reflect the speculation on routes, either reinforcing or disputing what was speculated?  The below map is a composite of this

There’s links to some coverage in London Archaeologist, such as a 2014 article in which “… Tatton-Brown and Donovan used historic documents and maps to suggest that the medieval waterways separating Thorney Island from Westminster were man-made and that the Vauxhall Bridge route was the original and only course of the river.”  The 3D views of the route and the illustration of the provide a speculative view of the area.  From the site:  “Our topographic model supports Barton and Myers’s suggestion that discussing two distinct branches (towards Westminster and towards Vauxhall Bridge) is an over-simplification of what was probably a more complex delta-like network, as shown [below] (artist Faith Vardy).  This geoarchaeological study provides a baseline for reconstructing the evolving landscape; when combined with historical records and archaeology, even more detailed models could be created. The research done by others, such as Tatton-Brown, which focuses on later periods, may be supported by geoarchaeological work undertaken in the future.”

The concept of geoarchaeology is pretty fascinating as well, and worthy of some further exploration.  In the interim, you can check out the MOLA site for what their team does, which focuses on using “…auger or borehole surveys and interpret the archaeological soils and sediments retrieved, allowing us to reconstruct past landscapes and environments.”  The reason for this particular subset is to pick up “…where the archaeology is too deeply buried for traditional excavation techniques to succeed. It is also a cost-effective archaeological evaluation tool and geoarchaeological deposit modelling, which maps buried landscapes and deposits.”  This is relevant as the surface remnants of these, but the underground deposits, so they work in a “…wide range of depositional environments, including alluvial floodplains, fluvial environments and estuarine/intertidal zones. Using palaeo-environmental proxy indicators, such as pollen and diatoms, we reconstruct past environments. Our specialists also use a range of sedimentological techniques.”

These techniques don’t answer every questions, but coupled with expertise and interdisciplinary research, enables us to see further, and deeper than previousl.  The role of archaeology and geoarchaeology in hidden hydrology is vital, as shown above. While we often rely on maps, photos, sketches, and written histories to reconstruct places,


HEADER:  Artist’s reconstruction of a cold climate, braided river, such as the Late Glacial Thames (artist Faith Vardy) – via

A recent story picked up by multiple sources focused on the potential for hidden hydrological systems to provide heat and cut carbon emissions through tapping into underground lost rivers.  The crux of the argument is that heat pumps could extract heat from these now piped subterranean waterways, and this heat could be used for buildings and other uses, offering an alternative power option for London.  The Guardian offered the potential for heat to “cut capital’s emissions”, and the Times and The Londonist echoed this, focusing on Buckingham Palace as a visible example for the potential for heating buildings.   Mother Nature Network and Earth.com a took a slightly different slant, focusing on helping curb carbon emissions, similar to the coverage from the Daily Mail about using heat from underground rivers to “tackle climate change”.

The specifics come from a group called 10:10 Climate Action, and a recent report highlights ‘Heat seeking in London’s lost rivers’, and looking at the variety of now-buried rivers as a source of power:

“But what if we could use them to power our city once again? Through the magic of heat pumps, London’s lost rivers could provide low cost, low carbon heating and cooling to the buildings above. They could help us solve the big challenge of decarbonising heat.  There’s huge potential for London’s lost rivers to provide clean, efficient and reliable heating for the city – tackling climate change and air pollution. And of course the same technology can be used in other underground waterways like sewers in towns and cities across the country.”

 

y for heat pumps to transfer heat from one place (the subterranean pipes) to another, specifically buildings or other areas via refrigerant, where it is compressed to form heat at the top of the loop, and then expanded to cool down and capture more of the heat.  A primer on heat pumps, as well as a video showing how heat pumps work also helps explain the concept, along with this diagram.

This is already happening in some areas, including Borders College in Scotland, tapping into local wastewater, and the State Ministry Building in Stuttgart, Germany, which is tapping into flow from the Nesenbach, a buried river.  A map extracted from the report (image below) shows a number of the potential sites in London, including The Effra, Stamford Brook, The Tyburn, and the Fleet, all of which have potential sites for the use of these technologies.  Specific places include Buckingham Palace (mentioned in a few of the articles above), which would tap the Tyburn, Hammersmith Town Hall which flows above Stamford Brook, and other buildings like schools and site elements like heated swimming pools, which is currently being done in Paris.  [click to enlarge map below]

A video from 10:10 explains this in a bit more detail, showing an example of a London pub sits atop a lost river and uses this heat pump technology and for it’s heating and cooling.

There’s questions on the cost-benefit, and each of these systems would require some infrastructure to be viable, however it’s pretty exciting to consider the potential of these systems to contribute to energy savings and reduction of carbon emissions, giving back some of their benefits to the city, even while still being buried underground.  I’m sure we’ll hear more about this process in cities around the globe, all of which could utilize similar techniques, as we search for expanded tools to battle climate change and rising energy costs.


HEADER: Image of the now subterranean mouth of the Fleet, via The Guardian

The Atlas for the End of the World is a great model for a compendium of research and mapping on a focused topic, which has relevance to my endeavor here at Hidden Hydrology.  While the content, scale and goals are different, the structure of information in the format of the ‘atlas’ and the combination of mapping, data, and critical inquiry through essay all resonate as a great precedent.

The project was conceived by Richard Weller from The University of Pennsylvania (UPenn), with collaborators Claire Hoch and Chieh Huang.  A summary of the project, launching in 2017, comes from the site:

“Coming almost 450 years after the world’s first Atlas, this Atlas for the End of the World audits the status of land use and urbanization in the most critically endangered bioregions on Earth. It does so, firstly, by measuring the quantity of protected area across the world’s 36 biodiversity hotspots in comparison to United Nation’s 2020 targets; and secondly, by identifying where future urban growth in these territories is on a collision course with endangered species.  By bringing urbanization and conservation together in the same study, the essays, maps, data, and artwork in this Atlas lay essential groundwork for the future planning and design of hotspot cities and regions as interdependent ecological and economic systems.”

Some background on the project is found in both Précis which provides a roadmap to the site, as well as an essay “Atlas for the End?” which alludes to the first modern atlas of Ortelius, the Theatrum Orbis Terrarum (Epitome of the Theater of the World) and the dawn of a new, albeit already populated, world, ready for exploration and exploitation.  As mentioned: “In 1570, when Ortelius published his atlas, the European imagination could literally run wild with whatever might be ‘out there’. Now, a mere 450 years later, that vast, mysterious world of diverse peoples and species is completely colonized and irreversibly altered by the material and conceptual forces of modernity. Whereas Ortelius marked out modernity’s territorial beginnings, this atlas—by focusing on the remaining habitat in the world’s 36 biodiversity hotspots —rakes over its remains.”

The extensive essay lays a formidable foundation for the research, touching on the impacts of the past 450 years and the loss of biodiversity through urbanization, and the identification of hotspots, as well as how cities play a huge role.  As quoted:

“Although it is not yet well monitored, it is increasingly appreciated that the metabolism of the contemporary city, no matter how divorced it might feel, is interconnected with the sources and sinks of the broader landscape. It follows then that environmental stewardship is as much a matter of urban design as it is landscape ecology. As Herbert Giradet insists, it is in cities “that human destiny will be played out and where the future of the biosphere will be determined. There will be no sustainable world without sustainable cities”.7

The themes touch on the foundations of the shift towards the Anthropocene, and our changing ideas about nature, stewardship, and it’s relationship to the profession of landscape architecture, touching on McHarg’s environmental ethics of the 1960s and also discussing the work of biologist Daniel Janzen and work on restoration of biodiversity using a metaphor of the garden.  “Janzen’s ‘garden’ is not an idyllic scene constructed for contemplation, nor does it trade in images of pristine wilderness. Wildland “gardenification” as he refers to it, is just damn hard work. As Janzen explains, it involves “fencing, planting, fertilizing, tilling and weeding … bioremediation, reforestation, afforestation, fire control, proscribed burning, crowd control, biological control, reintroduction, mitigation and much more.”36 Janzen’s garden is a continual work in progress.”

The ideas continue in discussions on the role of protected and connected ecosystems, and metrics, in this case, using the Convention on Biological Diversity (CBD).  From the text: “The overarching framework for the project of protecting and reconstructing a biodiverse global landscape is provided by the United Nations Strategic Plan for Biodiversity 2011-2020. The key mechanisms of this plan are brokered and administered through the Convention on Biological Diversity (CBD), one of the three ‘Rio Conventions’ emerging from the UN Conference on Environment and Development (the ‘Earth Summit’) held in Rio de Janeiro in 1992. The primary objective of the CBD is that “[by] 2050, biodiversity is valued, conserved, restored and wisely used, maintaining ecosystem services, sustaining a healthy planet and delivering benefits essential for all people”.   To this end, the focus on hotspots provides a locus for where these values intersect globally, as represented with ideas of protection (and lack there of) and the ability to access massive quantities of data collected through remote sensing and being able to map it using available technologies (while cautioning against the objectivity of mapping as a practice).

A concluding essay “Atlas for the Beginning” talks about the shift to our new reality of the Anthropocene.  A globe view shows “What’s left: the world’s protected areas as of 2015” which illustrates a bleak view of the fragility of the worlds ecosystems.  The takeaway is a research agenda that includes more data and analysis, as well as developing methods of action, including a  “…longer term research agenda is to establish a knowledge sharing network of demonstration design projects across the hotspots which bring landscape architects, environmental planners, conservationists, economists and local communities together to focus on areas of conflict between biodiversity and development. These SEED (systemic, ecological and economic design) projects will show how landscape connectivity can be achieved and how urban growth can be directed in ways that support all forms of life.”

The use of data visualizations, or datascapes, allows for unique comprehensibility of issues, as seen above. “The datascapes show that if the global population were to live (in material terms) as contemporary Americans do, there would be a major discrepancy between levels of consumption and what the earth, according to today’s technologies, can reasonably provide.” One such visual on Carbon Forest (below) shows the theoretical sequestration potential and equivalent size of forest to accommodate current populations, or, in actual numbers, “The 216 billion metric tons of CO2 emitted by a hypothetical global population of 10 billion such Americans would require 9.9 trillion trees to sequester its emissions. 2

The series of world maps are both beautiful and informative, spanning a range of topics both physical and social… a wide array of topics.

Each comes with a short blurb and reference.  The map on Ecoregions is described as: “The World Wildlife Federation defines an ecoregion as “relatively large units of land or water containing a distinct assemblage of natural communities sharing a large majority of species, dynamics, and environmental conditions” 1. An ecoregion is a biome broken down even further. There are 867 ecoregions comprising the world’s terrestrial and marine ecology. Nearly half of the world’s terrestrial ecoregions (391) are within the hotspots.”

 

Another interesting subsection is a feature Flora & Fauna, with “the photography of Singaporean artist Zhao Renhui, Director of the Institute for Critical Zoologists, from his 2013 artwork Guide to the Flora and Fauna of the World 1. The guide presents a catalogue of curious creatures and life-forms that have evolved in often unexpected ways to cope with the stresses and pressures of a changed world.”  The species are both amazing and somewhat disturbing, such as the bionic AquaAdvantage salmon (below), “…a genetically modified salmon that can grow to its adult size in 16 to 18 months instead of three years. The AquaAdvantage salmon has been modified by an addition of a growth hormone regulating gene from a Pacific Chinook salmon and a promoter gene from an ocean pout.”

Read more on the project via this post on the ASLA Blog, as well as a relevant article by Weller from the innaugural issue of LA+ Journal, entitled ‘World Park

All images and text: © 2017 Richard J. Weller, Claire Hoch, and Chieh Huang, Atlas for the End of the World, http://atlas-for-the-end-of-the-world.com 


HEADER:   Hotspot Cities: cities of 300,000 or more people projected to sprawl into remnant habitat in the world’s biological hotspots