The history of hidden hydrology isn’t just that of erasure, but of ‘made land’, significant areas that were added to cities through the process of landfilling. A June, 2017 post from National Geographic’s All Over the Map blog captures this on the east coast, telling the story of “How Boston Made Itself Bigger” illustrated with some fantastic maps.  The focal map shows the extent of landfilling throughout the span from 1630 to present, from the original shape of the downtown area (Shawmut Pennisula), and the modern shoreline in blue.  The massive extent of fill is pretty evident with significant percentage of the metro area on land that at one point in the not-so-distant past was water.

Much of Boston’s coastline is man-made land. The original shoreline, from 1630, is visible in dark green on this map. Land made between 1630 and 1995 is light green. PHOTOGRAPH COURTESY OF THE NORMAN B. LEVENTHAL MAP CENTER, BOSTON PUBLIC LIBRARY; CARTOGRAPHY BY HERB HEIDT AND ELIZA MCCLENNEN, MAPWORKS

A 1630’s map shows the Shawmut, and the narrow spit of land that connected this (for a time at least) to the mainland (rotated north to the right).

PHOTOGRAPH COURTESY OF THE NORMAN B. LEVENTHAL MAP CENTER, BOSTON PUBLIC LIBRARY

The impetus for the post on Boston was driven by lowering of the water table to levels that started to potentially reveal many of the wood piles, which stay preserved in anerobic conditions – as similar situation to a water-based city like Venice, for instance, but once water levels reveal them, makes them highly susceptible to rot.  From All Over the Map:

” A large portion of the city sits on man-made land. Structures built on the landfill are supported by dozens of 30- to 40-foot-long wood pilings, similar to telephone poles, that reach down through the landfill to a harder layer of clay. These pilings sit entirely below the water table, which protects them from microbes that would attack them in dry air, causing rot.”

The filling also was facilitated by damming, such as seen below, where what was the current Back Bay “neighborhood is marked “Receiving Basin” on this map. Boston Common is the uncolored area marked “Common.”  By damming the areas, thus separating them from the larger bodies of water and tidal changes, it was easier to then start to develop and fill in with railroads, industrial lands and more development.  The image shows expansion parcels, notably widening of the neck and further encroachment into the water.

PHOTOGRAPH COURTESY OF THE NORMAN B. LEVENTHAL MAP CENTER, BOSTON PUBLIC LIBRARY

As mentioned, it wasn’t just increased development area that was driving the land filling:  “Over the years there were many other motivations for making new land, including making harbor improvements, burying pollution from wastewater, safeguarding public health, building public parks, adding railroad tracks and depots, adding more shipping facilities to compete with other port cities, establishing appealing neighborhoods to entice Yankees to stay (and to counter Irish immigration), and creating space for the city’s airport.”  Another driver was public health, including filling in ponds and creeks, which were starting to smell.  Concurrent with filling (and a great source of fill) was removal of hillsides, another common city strategy, which provided plenty of earth to create more land while levelling, in this case, Beacon Hill. (via Wikipedia)

Cutting down Beacon Hill in 1811; a view from the north toward the Massachusetts State House

The Back Bay was a source of both significant filling due to its location as a locus of sewage (and a super complicated hydrological regime change that was involved), as mentioned in All Over the Map“…an 1849 report from a city committee that reads: “Back Bay at this hour is nothing less than a great cesspool into which is daily deposited all the filth of a large and constantly increasing population … A greenish scum, many yards wide, stretches along the shores of the Western Avenue [Mill Dam], whilst the surface of the water beyond is seen bubbling like a cauldron with the noxious gases that are exploding from the corrupting mass below.”  The area was filled with trash and other debris, as fill material was less available, along with being set on the aforementioned pilings, placing it in the awkward position of being even now “one of the city’s most desirable neighborhoods, but also among the most vulnerable to foundation rot.”

I’d be remiss as well if I didn’t mention, in the context of this, one of my favorite Olmsted projects, the Back Bay Fens, which came at the tail end of the filling, in the 1870s (via Wikipedia):  “Olmsted’s challenge was to restore the spot of marsh which was preserved into an ecologically healthy place that could also be enjoyed as a recreation area. Combining his renowned landscaping talents with state-of-the-art sanitary engineering, he turned a foul-smelling tidal creek and swamp into “scenery of a winding, brackish creek, within wooded banks; gaining interest from the meandering course of the water.”

The extent of land filling is hard to visualize, but the map that shows it most clearly in terms of downtown is a simple overlay of the original Shawmut Pennisula over the new shoreline (you can see the tip of the Back Bay Fens in the lower left hand corner).

Via Written in Stone…

And while not the most up-to-date map in terms of graphic style, a good way to illustrate the evolution of landfilling over time that is hard to capture on maps is this animation via the Boston: History of the Landfills page at Boston College.   Someone has probably updated this, so if you know of it, let me know any updated sources.

A later map in 1867 from the NOAA US Coast Survey below shows further expansions closer to the modern coast.  Although the land and coast changed less in the ensuing century and a half, the continuing legacy of the land filling continues to be costly to maintain, exacerbated especially in times of changing water levels that we are experiencing with global climate change.

The hydrology as well, although hidden, is evident in repairs for pilings and other issues of groundwater – a symptom of building and ‘making land’ on areas formally water. And as concluded in All Over the Map, “…with more than 5,000 acres of man-made land—more than any other American city (except perhaps San Francisco, where the landfill hasn’t been comprehensively totaled)—Bostonians will be living with this problem for the foreseeable future.”

ADDENDA

Plenty of folks have covered this in Boston and the idea of land filling, with a variety of maps and imagery, such a Boston Geology, and some more context on the pilings from the Boston Groundwater Trust.  Also, this great post from the Library of Congress ‘Putting Boston on the Map: Land Reclamation and the Growth of a City’ features a few maps, including one of the earliest maps, which highlights the former tight pennisula.

William Burgis and Thomas Johnston. “To his excellency William Burnet, esqr., this plan of Boston in New England is humbly dedicated by his excellencys most obedient and humble servant Will Burgiss.” 1728. Geography & Map Division, Library of Congress.

And a fabulous birdseye from the late 1800’s showing more significant filling.

Charles R. Parsons and Lyman W. Atwater. “The city of Boston.” 1873. Geography & Map Division, Library of Congress.

See the some of the timeline of history via the USGS series of maps of Boston here, or a more interactive map via MapJunction with an array of base and historical map overlays of Boston, including a cool 4-way slider that allows you to do an overlay left-to-right and control transparency top-to-bottom.  A couple of screen shots of these.

1776 Hybrid Map (Boston and Environs – Pelham)
1917 Hybrid Map (Boston Bromley Atlas)

And an out-of-print book worth tracking down is Nancy S. Seasholes Gaining Ground: A History of Landmaking in Boston (MIT Press, 2003) where the “story of landmaking in Boston is presented geographically; each chapter traces landmaking in a different part of the city from its first permanent settlement to the present.” 

Many cities share this trait, using fill to gain area, which has been both boon and boondoggle.  Locally, a great resource worthy of a deep dive is Too High and Too Steep: Reshaping Seattle’s Topography by David B. Williams (University of Washington press, 2015), which I’ve read and re-read which explores in detail, a similar massive manipulation and use of made land here in my current particular West coast City.

HEADER:  Image via National Geographic, “A map of Boston in 1775 shows the dam that closed off Mill Pond, which was later filled in to make new land. “  PHOTOGRAPH COURTESY OF LIBRARY OF CONGRESS

 

Map-making is an inherently iterative process.  Often finding an appropriate base layer is vital to providing a solid foundation for this process. In this spirit, I’ve been working on the digitization of the basic Public Land Survey System (PLSS), or the Cadastral Map series for both Portland and Seattle from the 1850s as base maps for the hidden hydrology studies of both cities.  This data, which is the most uniform and complete snapshot of the landscape of the west, is a great resource for the locations of historic streams and other features.  Because the use of the shared cartography of Townships with their corresponding Section grids, the PLSS maps provides a link to very accurately georeference the historic with the modern.  Prior to diving into some of this work, I thought it prudent to discuss the Public Lands maps themselves.

There’s plenty of history out there for those in the mood, and my plan isn’t a deep dive, but more of some context.  A good starting place is ‘The National Map’ page by the USGS on the subject of the PLSS, and a brief history page from the BLM.  Everything else you may want to know about the Cadastral Survey is found at the Bureau of Land Management page of Tools, including the massive 1983 History of the Rectangular Survey System by C.A. White (46mb PDF).  The terminology of the PLSS, is somewhat synonymous with the concept of Cadastral Survey, although in reality there is a difference, as one (PLSS) is the thing itself mapping the United States, and the other (Cadastral) a type of survey, defined as “having to do with the boundaries of land parcels.”  Cadastral surveys of all types are done all over the world, and the origin comes from the “…Latin base term Cadastre referring to a registry of lands. So actually Cadastral Surveying is surveying having to do with determining and defining land ownership and boundaries” (via Cadastral Survey).  

After the Revolutionary War, there was huge amounts of available land, and the need to distribute and sell tracts became necessary for the new survey.  While the original colonies were laid out pre-PLSS using more traditional metes and bounds, but due to the immensity of the effort, Thomas Jefferson proposed a system of surveying massive open tracts of land. The Land Ordinance of 1785 set up the system and the subsequent 1787 Northwest Ordinance kick-started the process (although it referred to the areas NW of the colonies, not the actual NW Territories).

The surveying moved across the country over the next hundred years – as   The extent of the surveying is captured in the map below, starting in Ohio and Florida on the east and encompassing the majority of the midwest, plains, and west including Alaska (which is still being surveyed today), with the only exception being Texas.  Almost 1.5 billion acres were included.

Anyone who has looked at a survey will be familiar with the language of the PLSS.  Any legal land description could be generated starting with “…the State, Principal Meridian name, Township and Range designations with directions, and the section number”. There are many versions of this diagram out there, but it breaks down the foundations of the PLSS using the Principal Meridians and Base Lines, and breaking the grid into Townships and the 36 smaller Sections.

The markers are vital to maintaining the integrity of the grid over centuries, and there are approximately 2.6 million section corners across the US. An interesting link to the ‘Corner Identification and Markings’ shows some of the layout specifics and one of the common protection measures employed for the corner monuments, circling the monument in a circle of stone.  There is a shared geography continuity between the principal Willamette Meridian, established in 1851, with bisects both Portland and Seattle, and the shared baseline which runs parallel a bit south of the border between the two states.

In the Pacific Northwest, and there’s some reverence for the particular.  The Principal Meridian Project is pretty fun, and has some great photos of the Initial Point (the crossing of the Principal Meridian and the Base Line seen above), found in  Willamette Stone State Heritage Site in Portland.

“The Willamette Meridian was established June 4th, 1851 and runs from the Canadian border to the northern border of California. The base line runs from the Pacific Ocean to the Idaho border. All property in Washington and Oregon is referenced to this point.  The original stake was replaced by a large stone in 1855 and is now part of The Willamette Stone Park in Portland.”

The PLSS is still updated, so if you want a deep dive in this topic, you can reference, the 1973 Manual of Surveying Instructions , which provides the most current info on PLSS surveying.  Rather than a mere history lesson, the concept of the PLSS is vital to the understanding the ability to reference historical maps and .  This is less important for East Coast but for a large portion of the United States, is the vital tool for hidden hydrology work.  Also the extent of coverage that was all completed within a short timeframe (at least in local areas) provides a measure of comparability between areas.

A typical survey map shows the detail of the maps, in this case Township No. 1 N. Range No. 1 East, in the Willamette Meridian, with downtown Portland in the bottom of the map, and showing some of the topographic features, ponds, and streams.  IN this case, the original 1852 map was redrawn in the early 1900s, which is pretty common.  This info is downloadable via the BLM site.

And the typical surveyor notes, which are a tough read, but shows the information which was later interpreted by the mapmakers, based on the surveyors notations as they followed the specific section lines within the individual townships.  The interpretation is a key item that implies the ‘filling in the blanks’ of these maps, as each line was not individually surveyed.

To see this in action, and to explain the correlation between georeferenced history maps and the modern GIS, you see the rectangular areas of the map Sections (this map is a composite of the map above (T01sn01e) and the Township below (T01s01e).  This is the area in the Taggart neighborhood, in this case the upper Taggart Basin, showing the Willamette River (light blue), some small water bodies and streams (darker blue), as well as riparian wetlands (green).

The same area is georeferenced with modern GIS info (in this case the 2010 roads, parks, schools), and you can see the Section Lines (orange) that register on maps.  The Taggart streams have long been buried, along with the filling of the wetlands along the Willamette for industrial lands.  The modern topography is also shown, and you can see the tracings of the landscape channels still evident today.

The ability to tap into other map tools, in this case digital elevation ‘hillshade’ model (of the Lower Taggart Basin) again give some context for new and old, and graphically show some of the landform that exists today.  There’s no shortage of analysis once the PLSS info is referenced.  Lots more specific info on these maps in Portland and Seattle coming soon.

While amazingly detailed, the maps are, as mentioned, somewhat variable in nature due to the interpretation of survey notes and mapmaking.  Thus, the PLSS becomes a great starting point, with good coverage and georeferencing, some they become a framework for overlaying other maps and data.  Also, while the surveying standards were the same, as I will point out in a future posts, the quality and legibility of the maps often depended on the mapmakers themselves, and maps of one location could have very different information.  This is evident from looking at Seattle versus Portland, and what i feel is a specific quality of maps in the latter versus the former.


Endnote:  Having grown up in North Dakota, I was very aware both of the grid, and the ubiquitous grid-shift – as the rhythm of gravel roads cut through the state if perhaps more evident and legible when each ‘back road’ follows a grid.  The excerpt below from Fathom shows the amount of contiguous one miles squares.

This making it infinitely possible to chart one’s path multiple ways to get to locations, and also comes with long stretches of arrow-straight road ending with a curve or more often a tee.  Many a speeding or slightly inebriated driver was been surprised by this phenomenon.   This comes up perusing such Instagram accounts like The Jefferson Grid, and for me more recently someone linked to re-posted from an article in Hyperallergic, featuring work of artist Gerco de Ruijter from 2015, as he masterfully documents this using a series of Google Earth images.

From his site:

“By superimposing a rectangular grid on the earth surface, a grid built from exact square miles, the spherical deviations have to be fixed. After all, the grid has only two dimensions.  The north-south boundaries in the grid are on the lines of longitude, which converge to the north. The roads that follow these boundaries must dogleg every twenty-four miles to counter the diminishing distances: Grid Corrections”

For more on this, check out Geoff Manaugh’s post from a few years back and his longer article in Travel & Leisure magazine.  And for a bit of bonus, check out Gerco de Ruijter short video ‘Grid Corrections’ (i prefer with the sound off, but let me know).

Grid Corrections (a one minute) from Gerco de Ruijter on Vimeo.

HEADER IMAGE:  Archival Photo of Surveyor – via BLM

The recent post Aquae Urbis Romae discussed the Waters of Rome project by Katherine Rinne.  As mentioned, the map referenced most heavily in her work is the 1551 Bufalini map, which shows conceptual topography and figure ground relationship. Like anything, once you dive into the maps of a particular area, especially one with the history, you can quickly fall down the rabbit hole.  So dive in.

A great article from The Metropolitan Museum of Art, Antonio Tempesta’s View of Rome: Portraying the Baroque Splendor of the Eternal City links to a number of maps that were created as part of a 2012 Bernini show.  Chronologically, this Nicolas Beatrizet engraving from 1557 is around the same time frame as the Bufalini map, but simplified, with some interesting graphic style and axonometric illustrations:

A more aerial version of this perspective from the west in 1590 is found in the Speculum Romanae Magnificentiae: View of Modern Rome from the West by Giovanni Ambrogio Brambilla.

The map perspective ‘Plan of the City of Rome’ from Antonio Tempesta is from 1645 but was first printed in 1593 around the same time as the Brambilla map, bust showing the view from the northwest.

The maps as a whole is broken into twelve tiles, so zooming in on an individual view shows the richness of the illustration.

Taking a similar view from the Northwest as the Tempesta map, Matthuas Merian’s 1642 Topographia Germaniae printed a color version, showing the view in 1641, and definitely highlights how the use of color can change the nature of a map.

Coming 200 years after Bufalini, the (argubly) most famous map of Rome is one of my favorites, the 1748 Map ‘Grande Pianta‘ by Giambattista Nolli (more commonly known as the Nolli map).  This work of art is infamous for its detail and being the precursor of the expanded ‘figure-ground’ diagram many of us use today.

Nolli Map – via visual.ly

A set of high-resolution tiles from UC Berkeley allows for zooming in to the beauty of the map, the gradations and the figure-ground representation.

The idea of the interior public spaces as ‘void’ on the map is worth a close-up, as you can see above a bit, but it’s easier to read here, where you can see the plaza spaces (bottom of Piazza Navona on the upper left) versus the interior spaces such as the circular Pantheon and the structure of local churches:

And I love the way some of the gardens are represented, which gives a somewhat different feel from plaza spaces – sort of creating a spatial hierarchy and network of green spaces.

After searching, I found the term for the illustrative border, not sure if that’s the cartographic term, but the veduta ‘italian for view’ is typically a cityscape.  The one the Nolli map illustration was done by Stefano Pozzi.

There are some other high resolution version of this as well, and if you have the means, they can be purchased here, here and here.

For the interactive options, a project of University of Oregon spawned an online interactive version of the Nolli Map“The Nolli website presents the 1748 Nolli Map of Rome as a dynamic, interactive, hands-on tool in both written and graphical form. The map not only provides rich information, but it has the ability to be updated with new data over time to embrace expanding knowledge.”  The viewer is ok, and the thematic symbols are interesting, but resolution is a bit too small, objects aren’t clickable and the interface is somewhat hard to navigate.  

For some other options, there’s an OS app as and another digital version from B-Open Solutions which is a simple georectified copy overlaid on the modern map, allowing for easy zoom, multiple underlays, and opacity shift to see the before and after (which amazingly is not that different – owing to the quality of Nolli’s map-making).  It also includes the ability to click on the original legend for Nolli’s map.

 

The Nolli map is the touchstone of modern mapping in Rome. In the mid 1800s, for some reason, an almost exact copy of the Nolli map by Paul-Marie Letarouilly. A clickable version of a tourist map based on the 1852 map is the basis for a clickable map of info by Rome Art Lover, which has some good info (lurking within a mid-90s website style).  More interesting is his precursor, which is also based on Nolli, the  1849 Plan de Rome Moderne au tiers de celui de Nolli which acknowledges the original.

Detail shows the homage to the interior public spaces from Nolli, and something about the sparseness of linework (albeit a copy) makes this a beautiful addition to the map library .

CODA: DEEP HISTORY

As I emerge from the rabbit hole, it reminds me of the rich history of mapping, and the skill of the mapmakers in the absence of modern tools.  While this is not about hidden hydrology per se, the map as a tool, inspiration, and guide is a thread that permeates mine and others interest, and the concept of multiple maps documenting ‘long’ history is impressive.   In that spirit (inspirations and rabbit holes) one must go even farther back, and visit the Stanford Digital Forma Urbis Romae Project, which documents the Severan Marble Plan of Rome.  Be forewarned, you can lose yourself in this one.  Some background:

“This enormous map, measuring ca. 18.10 x 13 meters (ca. 60 x 43 feet), was carved between 203-211 CE and covered an entire wall inside the Templum Pacis in Rome. It depicted the groundplan of every architectural feature in the ancient city, from large public monuments to small shops, rooms, and even staircases”

There are available a little over 1000 fragments, many with few marks and some painting the rich historical story of the map.

To give an indication of the immensity of the effort, some more from the site, “The Severan Marble Plan is a key resource for the study of ancient Rome, but only 10-15% of the map survives, broken into 1,186 pieces. For centuries, scholars have tried to match the fragments and reconstruct this great puzzle, but progress is slow–the marble pieces are heavy, unwieldy, and not easily accessible. Now, computer scientists and archaeologists at Stanford are employing digital technologies to try to reconstruct the map.” 

Save

From the recent post, Indeterminate Rivers the Geological Investigation of the Alluvial Valley of the Lower Mississippi River by Harold N. Fisk offers a wealth of information on landscape change.  When I first saw the series of maps the idea of showing the shifting path of the river came to mind – and I envision a much more intensive and animated idea could be applied to the color map series (from the original post) to illuminate not just the static traces but the actions of this hidden hydrology over time.

The simple animation below is based on the maps in the report that discuss the formation of the valley and the current configuration of the meanders.  For reference, this map isn’t an attempt to make  conclusions, but to activate some of the data represented in 2-D format in the report – showing the breadth of change of the main path of the Mississippi over the course of 4000 years of change.

More explanation of the specifics found at the page ‘Mississippi River Change’.

Save

Save

The concept of history is relative. Living in the Pacific Northwest in the United States, a span of a few hundred years constitutes the sum of contemporary settlement and European colonization (with some exceptions). Many contemporary cities such as Seattle and Portland, for instance, were only formally settled in the 1850s, are were not urbanized for decades after, resulting in relatively short histories. Obviously these lands were populated for years previously by indigenous peoples, some with formal and informal settlements, however, either way, the modern urban form is young.

The eastern US has a slightly longer history, but even New York’s history of European settlement dates around 1600, so around four-hundred plus years.  Many places in the world have a much different story and measure history is very different terms.  Rome, for instance, offers a different scale of time, much deeper picture of history spanning millennia.  Depending on who you consult, Rome was a village since the 9th Century BC and became a city around 753 BC, so has been evolving for almost 3,000 years.  In much of this span “The Roman empire stretched over three continents, had 70 million people, and had a logistics and infrastructure system that kept them going for centuries.”  (via Science 2.0)

A great site to explore this immense history with a unique focus on water is Aquae Urbis Romae: The Waters of the City of Rome – a long-term project of Katherine Wentworth Rinne from 1998 to present, which is published by the Institute for Advanced Technology in the Humanities from University of Virginia.

A summary:  “Aquae Urbis Romae is an interactive cartographic history of the relationships between hydrological and hydraulic systems and their impact on the urban development of Rome, Italy. Our study begins in 753 BC and will ultimately extend to the present day. We examine the intersections between natural  systems–springs, rain, streams, marshes, and the Tiber River–and constructed systems including aqueducts, fountains, sewers, bridges, conduits, etc., that together create the water infrastructure of Rome.”

The site has a ton of information, especially great for an Italophile such as myself.  The content is organized into a few categories, some of which are for archival purposes as their web presence is not longer functional, but there is info organized as a timeline (including a GIS Timeline Map), as well as by typology, and studies of topography.  There are maps and a list of resources and some good primary and secondart texts available.  The journal “The Waters of Rome” offers ten essays with some additional scholarship on Rome history and culture around water.  I’ve yet to dive in depth into these, but look forward to it.

For hidden hydrology perspective, the Timeline features the ability to isolate typologies that allow focused look at systems.   A section of maps on Hydrological Setting, shows the hidden streams overlaid on modern (c. 1998) city grid and topography.  “This map represents a composite of data drawn from archaeological, geological, historical, and literary evidence concerning the hydrological structure of the intramural city and its immediate surroundings. It does not represent a specific point in time, but rather represents an amalgam of hydrological features, most of which have been known since antiquity. However, water is dynamic and therefore constantly changing. Springs can disappear, dry up entirely, or reemerge at a different, sometimes distant location. Streams and rivers can change course, and the profiles of their beds are constantly changing as well.”

This information is activated by translation into three-dimensional views in the Topography section, providing some more info on the landform that relates to historical streams.  They are developed thematically as well, with a number of studies such as hydrology and aqueducts serving the baths and fountains in the city.

Today this is somewhat simplistic in terms of graphics. In 1998, this would have been pretty cutting edge stuff.  Similarly, the GIS Timeline map offers both spatial and temporal info in a more interactive format, with the ability to customize.  This is the best info I’ve found on historical hydrology of Rome, via the Geographic features typology that include Marshes, Swamps, Rivers, Streams, and Springs, a few of which are plotted below.

The focus is on water, but not just streams, there’s a range of other typologies, including water distribution, infrastructure, flooding, markets, walls, neighborhoods (rione), baths, fountains, and more.  The icon based map allows for more info via pop-ups.

A legend shows the span on types of info captured, along translation of English and Italian terms.

The temporal aspect is a interesting idea, as it allows a fourth dimension to the mapping that seems vital to historical study. The slider (seen below) allows for all years to be selected, or to select individual decades, and eras, to capture snapshots of info at certain time frames.  As mentioned on the site: “Follow the urban development of Rome through a unique G.I.S. timeline map that chronicles changes to the water infrastructure system from 753 BC through the sixteenth century. See how sewers, aqueducts, fountains and other hydraulic elements changed the face of Rome, as important people like Agrippa, Emperor Nero and popes Sixtus V and Clement VIII, among others, used water as an element of political control.”

This obviously works better for cultural features like buildings and fountains that have specific dates of creation and erasure, so not sure if it captures erasure of surface streams into subsurface routes.  However, with enough information, you could show the disappearance over time for any water system and include animations at a time step (similar to this historical study of the Mississippi River gleaned from the Fisk maps).  Something worthy of exploring with current GIS and animation technologies.

The site is plagued with some old technology in terms of web design (frames, for instance, which are awful for navigation), as well as the mapping and animations discussed above. This is tough, as its always hard to keep things up to date.  Over time, something using the most recent tech quickly becomes outdated, especially on a project that spans decades such as this.  That said, the content holds up very well, and some easy fixes would be to remove some of the clunky old maps and convert these to simpler embedded open source interfaces (Google Earth, etc) – as well as to be able to download GIS files of some of the key info. Sounds like from some of the notes, there’s some updates in the works, so look forward to reaching out to Ms. Rinne and see what she has planned.

The idea of deep history in tied closely with the maps, and the long history of mapping Rome is a fascinating rabbit hole to dive into.  The site offers a link to many Print, Drawing, Map and Photographic collections of Rome, where you will find the the key source in this exploration, the map ‘Roma’ by Leonardo Bufalini in 1551, which shows a somewhat developed city plan along with rudimentary topography and hydrology from almost 600 years ago.

The site offers each of the tiles of the map, (noted: Courtesy of Kersu Dalal, Johnson Fain Partners, Los Angeles).  This shows a lot of amazing detail, and hints at slopes and ridges and depressions that impact water movement.

A figure from the 1897 publication “The ruins and excavations of ancient Rome” by Rodolfo Lanciani shows the ‘Hydrography & Chorography of Anicient Rome’, capturing many of the streams and marshes shown on other maps.

And zooming about a bit, showing the broader area of “The Tiber & Its Tributaries” by Strother Smith from 1877.

The most famous map of Rome is one of my favorites, not mentioned much on this site, but well known.  Almost 200 years after the Buffalini map, the 1748 Map ‘Grande Pianta‘ by Giambattista Nolli (more commonly known as the Nolli map).  This work of art is infamous for it’s detail and unique showcasing of public/private spaces inside and outside of buildings, versus pure figure-ground relationships.  I’ll discuss this map and a few others from Rome in a follow-up post.

Nolli Map – via visual.ly

Images on this post from the site Aquae Urbis Romae: The Waters of the City of Rome unless otherwise noted.
Header image: Castel San’t Angelo from the South, painted in the 1690s by Caspar Andriaans van Wittel

I had the opportunity to see Kate Orff from SCAPE speak a few weeks back at University of Washington, and it was inspiring to see the mix of project work and activism that is the mark of this creative firm.  This project aligns nicely as it is featured in her new book, Toward an Urban Ecology and is another example of ecological design in an urban context.  She focused on some of the older projects in her talk, but this is one I’ve been waiting to explore here at Hidden Hydrology, the Town Branch Commons in Lexington, Kentucky.

scape_aerial-perspective

The project unique example of using the historical hydrology and geology as design inspiration – not a true daylighting but falling somewhere in the middle of the continuum from art to restoration.    From Architect’s Newspaper, a recent post SCAPE turns Lexington, Kentucky’s long-buried water into an asset provides a pretty extensive visual overview and some description into the project that complements the overview in the book.

“Town Branch Commons weaves a linear network of public space along the 2.5 mile path of the historic Town Branch creek in downtown Lexington, Kentucky. Once a waste canal, sewer, and water conduit for the city, the buried stream channel of Town Branch is an opportunity to reconnect the city with its Bluegrass identity and build a legacy public space network for the 21st century. Rather than introducing a single daylit stream channel into the city fabric, the design uses the local limestone (karst) geology as inspiration for a series of pools, pockets, water windows, and stream channels that brings water into the public realm.”

scape_plan

The renderings show the movement of water and the use of stone to embody the conceptual ideas of the Karst geology, which is responsible for the landscape of disappearing and reappearing springs.  A more expansive overview of the landscape type from the International Association of Hydrogeologists (IAH) site describes it as:   “A landscape formed by the erosion of bedrock, characterized by sinkholes, caves, and underground drainage systems. Many of the surface features are due to underground processes of the weak acids of groundwater dissolving the rock and creating a varied topography.” 

 

scape_diagram_water

This is seen in the design concepts for the spaces that are woven through the corridor, an approach referenced in Toward an Urban Ecology as a ‘Geology as Materiality’ (p.38).  The Karst metaphor is incorporated with orderly frames, referencing with geology within a semi-formal urban context that softens the spaces while maintaining functionality.  This is where the design-centric approach would differ from the more formal restoration, referencing a key hydro-geological precedent in an urban context.  As mentioned in the book ‘Towards an Urban Ecology’:  “Town Branch is recast as hybrid hydrological and urban infrastructure, creating defined and safe spaces for water, pedestrians, bicyclists, and vehicles along its path.  In the downtown core, streets are realigned to make way for an extended public realm, where water is expressed not at the surface, but underground, as rainwater-fed filtration gardens clean the waters of Town Branch before entering the culvert below.” (p.36)

scape_karst

The concept of the sunken areas allow for an immersive experience within an urban realm.  The separation of grade and edges of formal and natural provide variety of experiences that provide a model for ‘daylighting’ and applied urban ecology that is both functional and artistic, aesthetic but with some ecological rigor.  As mentioned in A/N: To create freshwater pools—SCAPE calls them “karst windows,” in reference to similar naturally occurring formations—the design will tap old culverts (essentially large pipes) that previously kept Lexington’s karst water out of sight.

scape_simple_section

And more dramatically enveloping in a recreation of the Karst geology and incorporation of moving, dynamic water, while also allowing for physical access to the water, a rare treat in urban areas.  This image shows waterfalls near Rupp Arena, a high-visibility area adjacent to more formal plaza spaces at surface.
scape_rendering

The nature/culture connection is strong, and a unique model that is about the landscape of Lexington.  As mentioned in A/N: “Here it’s all about finding a unique identity framed around a cultural and geological history of a place,” said Gena Wirth, SCAPE design principal. “What’s replicable is the multipurpose infrastructure that unites the city, its story, and its systems.”

scape_aerial-render

Water Walks

An interesting part of the narrative is not just the project design, but the generative strategy used by SCAPE to develop the project.  Those already familiar with another SCAPE project, the fantastic Safari 7, (which will get some documentation here soon) will note some similarities of the use of place-based audio and mapping, They documented a public outreach process Town Branch Water Walk which aimed to connect residents to the local landscape.  From their site:

“The result, Town Branch Water Walk, is a self-guided tour of downtown Lexington’s formerly hidden water body, Town Branch Creek, with content developed together with University of Kentucky students. The design intervention is not a physical landscape, but a communication tool– using podcasts, maps, and walks for the interpretation of urban systems. The Water Walk gives a broad understanding of the biophysical area around the Town Branch, reveals the invisible waters that run beneath the city, and demonstrates some of the impacts each resident of Lexington can have on the river and its water quality. By sharing how water systems and people are interrelated—both locally and globally—the Town Branch Water Walk makes stormwater quality relevant, linking it with the history, culture, and ecology of the city.”

scape_walk2

The walking tour is accompanied by audio that can be used in situ as podcasts, and as more formal walking or bike tours – and this model/map was also used at events along to provide  listening stations for the various stories.

scape_walk1

There’s more on this process worthy of additional exploration and future posts, and check out the audio and links at www.townbranchwaterwalk.com

All images via SCAPE

Save

Save

Save

Save

Save

Save